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Pipes of 

In exhaust pipes of automotive engines, the pulsating pressure waves are composed of 

fundamental frequency and high order harmonics. The nonlinearities in the exhaust pipe is 

caused by their interactions. The error between prediction and measurement is induced by the 

nonlinearities. We can not explain this phenomenon using linear acoustics theory. So power 

spectrum, which is used in linear theory, is not useful. This paper is concerned with the 

development of useful engineering techniques to detect and analyze nonlinearity in exhaust pipe 

of automotive engines. The study of higher order statistics has been dominated by work on the 

bispectrum. The bispectrum can be viewed as a decomposition of the third moment (skewness) 

of a signal over frequency and as such is blind to symmetric nonlinearities. The phenomenon of 

quadratic phase coupling (QPC) can be analyzed by the bicoherence function. Finally the 

application of these techniques to data from actual exhaust pipe systems is performed. 

Key Words:Pulsa t ing  Pressure Waves, Higher Order Statistics, Bispectrum, Quadratic Phase 

Coupling (QPC), Bicoherence 

I. In troduct ion  

Intake and exhaust noises from internal com- 

bustion engines are a major contributor to a noisy 

evironment affecting millions of people. Exhaust 

noise levels are often near, or even exceed, 90 dBA 

at the operator's location. Because of its low- 

frequency content, exhaust noise propagates with 

little attenuation into people's homes, recreational 

areas, and work places. 

When only acoustics are of concern, mufflers 

may be readily designed to achieve virtually any 

* Corresponding Author, 
E-mail : chako@mju.ac.kr 
TEL: +82-31-330-6420: FAX : +82-31-321-4959 
Department of Mechanical Engineering, Myong-Ji Uni- 
versity, San 38-2 Nam-dong, Yong-in city, Kyunggi 
do. 449-728, Korea. (Manuscript Received August 16, 
2003; Revised October 6, 2003) 

level of control of intake or exhaust noise (Davis, 

1964). Generally, increasing levels of attenuation 

may be reached with increasing muffler volume, 

weight, and back-pressure (at the engine mani- 

fold). However, all of these parameters adversely 

affect the cost and performance of the vehicles 

to which mufflers are applied. For examples, the 

back-pressure of an exhaust system may degrade 

engine performance by a few percent (Eizo 

Suyama and Takashi lshida, 1990). 

The noise radiated from out internal combus- 

tion engine and propagated through the exhaust 

gas medium is statistically analyzed and charac- 

terized as a stochastic process deriving from the 

combination of different components. The radiat- 

ed noise is expected to be produced by periodical, 

almost periodical and non linear processes. For 

the reason its complete statistical characterization 

needs non conventional spectral analysis. Con- 
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ventional  digital signal processing is based on 

Fourier  theory. By means of Fourier  analysis, 

only linear mechanisms can be studied, since 

supposed uncorrelat ion among harmonic  com- 

ponents implies phase in[brmation suppression. 

Power spectrum (Seybert and Hamil ton,  1978: 

Lyon, 1975; Bendat and Piersol, 1993) informa- 

tion is not sufficient in case of non-Gauss i an i ty  

and non- l inear i ty .  

In the present paper Higher order spectra techni- 

ques (Bispectrum analys is ) (Nik ias  and Mendel, 

1993; Nikias and Petropula, 1993: Nikias and 

Raghuveer, 1987 ; Miksad et al., 1983) 1"or analy- 

sis and detection purposes are employed, in com- 

parison with the convent ional  Fourier  approach. 

Higher order spectral theory has been preferred 

since it is a useful thing to cover a lot of  nonl inear  

fields and is suitable lbr general signal processing. 

2. Higher  Order Spec tra l  Theory  

2.1 Expectation, probability density func- 
tions and moments 

Given any signal g ( x ) ,  the expected value of 

g(x)  is defined as 

EE Ixll=f  lxlpi  dx (1) 

where, E is the expectation operator. Also, the 

expected value of g(x)  is the average of  g(x)  
weighted by the likelihood of x occurring, as 

given by the probabil i ty  density function of x. 

The moments  of a stationary random process 

{ x ( t)} representing a physical phenomenon are 

defined as 

f_ 
o o  

u k = E [ x  k]= x~p(x)dx,  k=O, 1, 2, ... (2) 

where, p(x) is probabil i ty  density function of 

{ x ( t ) }  and ~k is called the k th moment.  For  the 

zero moment  ( k = 0 ) ,  it is clear that 

The first moment ( k =  1) yields 

(4) 

which is called the mean value of { x ( / ) } .  

The second moment  ( k = 2 )  gives 

which is called the mean square value of { x(,t)} 
and the positive square root of the mean square 

value is called the roo t -mean-square  or rms val- 

ue. 

For  second and higher moments,  it is often 

convenient  to calculate moments about  the mean, 

referred to as central moments. The second central 

moment is given by 

S2=EE(x- l ]= f (x- 12p(xtdx=  (6i 

which is called the variance of { x ( t ) }  and the 

positive square root of the variance is called the 

standard deviation. The calculat ion of moment  

using equat ion (2) can be extended to as high an 

order of r as desired. 

If x is a stationary, random, signal, the r th 
moment  of x ( / ) ,  denoted l.tr, is defined as 

l~r=E[xr( t )]  (7) 

Note that l~a=E[x(t)]=/~, the mean of x ( / ) .  

High order moments (Mood et al., 1974) are 

usually calculated as central moments about  the 

mean. That  is 

t ~ = E [  (x( t)  -/-~z) ~] (8) 

The second central moment  is the variance of a 

signal, 

v a r [ x ( t ) ] = m = E [ ( x ( t )  _ ~ ) 2 ]  = ~ 2  (9) 

This gives a measure of the spread of a signal 

about  the mean. The probabil i ty  density function 

of a signal with a Gaussian or normal  distributi  

on (see Figure 1) is completely described by its 

mean and variance. Higher order moments are 

often used to describe the properties of more 

complex signals. The third moment  about  the 

mean, /-13, is sometimes called skewness and is a 

measure of asymmetry of the probabi l i ty  density 

function. 

A probabil i ty  density function similar to that 

shown by the solid line in Figure 2 is said to be 

skewed the left and has a negative skewness, while 

one similar to that shown by the dotted line is 
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said to be skewed to the right and has a positive 

skewness. The ratio ,u3/~rx a, which is dimension-  

less, is called the coefficient of  skewness and gives 

a measure of  the degree to which a distr ibution is 

skewed. 

2.2 Higher  order spec trum 

The power  spectrum and bispectrum are just 

part icular  examples of  the generalized concept of  

poly-spectra.  Just as the power  spectrum is able 

to give a decomposi t ion  of  power over frequency, 

it is possible to use higher order spectra to obtain 

a decomposi t ion  of  skewness over frequency and 

so obtain more information about  the higher 

order statistics of  a signal (Priestley, 1981). The 

power spectrum is the main tool of  signal analysis 

and a huge body of  literature has been published 

concerning its use and properties. It is the most 

commonly  used of  the poly-spect ra  for being of  

the lowest order, it is the simplest to calculate and 

easiest to interpret. The power  spectrum is con- 

cerned with the second order statistics of  a signal 

and will now be defined both in the context of  

deterministic and stochastic processes. The  energy 

in signal is 

x2(t)= f_ x2it) t lto) 

Substituting x(t)=f~x(/)e~='ctt into equa- 

tion (10) gives, 

x2(t) =ff f :x ( f l )X(A)e '2~" / '+J"d tdAdf2  (I I) 

Integrating equat ion (11) with respect to I and 

using the shifting property of  the 6' function 

results in, 

t) = ff_ x (fl) X (fz) 8(f ,  + f2) df, dfz 
(12) 

= f : x ( f , ) X ( - A ) d f l  

From this the energy spectrum can be defined as, 

Exx (f) = X  (f) X ( - f )  (13) 

For  a s ta t ionary  stochastic process it is possible to 

use a s im i la r  method,  to ob ta in  the p o w e r  spec- 

t rum wh ich  is def ined as 

Sxx(f~, f z ) = E E X ( f l ) X ( - A ) ]  (14) 

For  a stationary process it can be shown that 

Sx~(fa, fz) is equal  to zero except a long f l  = - f z .  
This results in the fol lowing,  more usual, defini- 

tion for the power spectrum of  a stochastics pro- 

cess 

Sxx ( f )  = E [ X  ( f )  X *  ( f )  ] (15) 

where '*' denotes the complex conjugate. The 

power spectrum treats each frequency component  

as independent  from all others and measures the 

power  of  the signal at each frequency. It is a real 

quanti ty and contains no phase information and 

as such is said to be phase blind. Rather than 

decomposing the energy of  a signal to produce the 

energy spectrum, it is possible to conduct  similar 

analysis on a cubed signal, 

f_Z  (t)at (16) 
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x ( t )  = f__ :X( f )ea ' a r~ td f  into Substi tuting equa- 

tion (16) gives. 

xa(t .]jjj_ X f~ X.h)X fale dtd~<fadfs 

= flff x(f,)x(A)x(f,)8 f~+f2+fa)df~dfzdf, (117) 

= 

From this, the bispectrum of a deterministic sig- 

nal can be defined as, 

E,~x~(A, A ) = X ( A ) X ( A ) X ( - A - A )  (~8) 

For a stochastic process, using the same method 

as for the power spectrum, the bispectrum is 

defined as 

Sxxx(A, fa, f s ) = E [ X ( A ) X ( f z ) X ( f s ) ]  (19) 

If the process is stationary, it has been that S~,:x 
(fl, fz, ]ca) is equal to zero except on the plane 

./ca = - f l - f z .  Therefore, the bispectrum of a sta- 

t ionary stochastic process is defined as 

Sx~x(f,, A) =E[X (A)X(A) X* (A+A)] (20) 

x (t) = e  J==p't (21) 

This has a Fourier  transform, 

X { f )  = c~ ( f - - p , )  (22) 

where c~ represents the Dirac delta function. This 

is shown diagrammatical ly in Figure 3. If X ( f )  
is substituted from equat ion (22) into equat ion 

(18), the bispectrum is equal t 

E=x(ft. re) =g( / , - - /h )  8(/2--A) (~(f~+/2--])~) (23) 

This contains  the triple product. There will only 

be a non-zero  point  in tile bispectrum when all 

three terms in the above product are non-zero.  

Plott ing the three terms in the (fl, re) plane leads 

to the three lines, f l=Px ,  Pz=Pl and A+fa=Pl,  
as shown in Figure 4. For  pl#=0 there is no point 

of intersection of all three lines and hence the 

bispectrum of a complex sine waves is zero. Next 

consider a signal consisting of two complex sine 

waves of frequency p~ and /~. The Fourier  trans- 

form of this signal is, 

In the same way that the power spectrum is 

concerned with the power of a signal, or second 

order moment,  the bispectrum is concerned with 

the skewness, or third order moment.  The bispec- 

trum is a function of two frequency variables, f l  

and f2 and while the power spectrum considers 

each frequency component  independently,  the 

bispectrum analyses the frequency interactions 

between the components  fl, f2 and fl+f2. It is a 

complex quanti ty conta in ing  both real and im- 

aginary parts. However, throughout  this work 

only the magnitude of the bispectrum is consi- 

dered. Two simple examples, using sine waves, 

are now given demonstrat ing some of the possible 

frequency interactions that can occur in the bis- 

pectrum. Sine waves are used as an example 

because they produce easily understood results 

despite the fact that they do not conlbrm to 

assumption of being stationary random signals. 

Consider  a complex sine wave of frequency Pl. A 

complex sine wave is used in order to suppress 

unwanted cross terms between the positive and 

negative frequency components.  

~ f  
pI 

Fig. 3 Fourier transtbrm of sine wave 
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"',. 
............................................................., f'- = p,  
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Bispectrum of sine wave Fig. 4 
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X ( f )  = 8 ( f - P ~ )  + a ( f - / ~ )  (24) 

This  is shown in Figure 5. The deterministic 

bispectrum is now equal  to 

E . ~ x ( A ,  /2) ={ 3 ( A - P ~ )  +~(A-P2)} 
{ a(k-pl) +~(A-~)} (25) 
{ a(A +A-,o,)+a(k+k-~)} 

ix(f) l I l 

> f  
pl p2 

Fig. 5 Fourier transform of two sine waves (.02=2 
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Bispectrum of two sine waves ( ~ = 2 p l )  
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Fig. 7 The bispectrum of two sine waves of frequen- 

cy 50 Hz and 100 Hz 

This can be shown to consist of  eight terms, each 

of  which is a triple product.  If  there are plotted in 

the (fl, f2) plane they appear as the six possible 

lines f l=Ph f2=Pl, A = P 2 ,  f 2 = / h ,  A + f 2 = P l  and 

f l + f 2 = ~  as shown in Figure 6. There will be an 

intersection of  the three terms if p2=2p]. The 

Intersection will then occur at (p~, Pl) as shown 

by the dot  in Figure 6. An example of  the bis- 

pectrum of  two sine waves of  frequencies 50 Hz 

and 100 Hz is shown in Figure 7, where it can be 

clearly seen that there is a peak at (50, 50) Hz. As 

the bispectrum is a function of  two frequency 

variables it is easy to plot it as a three dimen- 

sional function with the bispectral content  rising 

out of  the (fl, fz) plane. Here a 'mesh'  type plot 

is used to show the magnitude of  the bispectrum 

as a three dimensional  surface. Simple ' contour '  

maps occasional ly al low one to interpret the fine 

detail with more accuracy as two dimensional  

surface. The bispectrum is defined as a decom- 

posit ion of  the average of  a signal cubed and as 

such is concerned with the skewness of  a signal. 

3. E x p e r i m e n t a l  

A p p a r a t u s  a n d  P r o c e d u r e  

Figure  8 shows the experimental  apparatus 

used in the present experiment, The engine used 

in the experimental  work was a 1,500 cc 4-cyl in-  

der, 4-s t roke unit manufactured by the general 

automotive  company in Korea.  The main engine 

specifications are given in Table  1. 

The engine is mounted on a test bed and con- 

nected to a HE-130  eddy current dynamometer  

by a rotor shaft. The exhaust systems are manu- 

factured as shown in Figure  9. Figure 9 shows the 

experimental  test section for pulsating waves in 

. . . . .  

. 

Fig. 8 Schematic diagram of experimental apparatus 
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Table 2 Specifications for Experimental Engine 

Detail Description 

Displacement, cc 1500 

Bore, mm 76.5 

Stroke. mm 81.5 

Comparison ratio 9.5:1 

Open BTDC 18 ° 
Inlet valve timing (deg) Close ABDC 57 ° 

Exhaust valve timing (deg) Open BBDC 60 ° 
Close ATDC 13 ° 

Max. Torque (kg.m/rpm) 13.6/3200 

Max. Power (ps/rpm) 88/5600 

~_ . ~  _@ ~P _@ ~P~ 
~"  • • - I i 

T-" a'I-- b -'- . . . . .  c ""'" | d  1,,,._ e ""-'-I g ~g ~:~l - 

L : 4 0 0 0 m m ,  ~ : 4 0 r a m ,  

a : 2 1 0 r a m ,  b : 5 0 0 m m ,  c : 7 9 0 r a m .  d : l l 4 0 m m ,  e : 4 5 0 r a m ,  

f : 4 5 0 r a m ,  g : 2 2 0 r a m ,  h : 1 3 0 m m  

Fig. 9 The test section of Exhaust Systems 

the exhaust system. The test section is fabricated 

to divide six parts for the various test condit ion.  

The total length of  the exhaust system from the 

valve face to the plain end open to the atmosphere 

is 4000 mm before bending on chassis body frame 

of  automotive.  Engine speed is fixed at 800 rpm, 

so that the second order harmonic  is almost 

occurred at 50 Hz frequency domain.  

At the @ ~ ( ~ )  points in the exhaust system there 

are mounted s t ra in-gauge type pressure trans- 

ducers. The s t ra in-gauge type pressure transducer 

is fitted to the exhaust pipe by means of  water-  

cooled method. The diaphragm sits flush with 

the inside wall of  the pipe and so avoids the error 

in pressure indication associated with transducers 

that have remote diaphragms and connecting in- 

dicator passages. The pressure signals are taken at 

the selected positions along the length of  exhaust 

system for given engine speed and pressure signals 

are fed to amplifiers. The  output  from amplifiers 

is displayed on a Tektronix Type 420 oscillos- 

cope. Figure 10 shows the cal ibrat ion chart of  a 

pressure transducer used in the experiment.  The 

sensor characteristic is indicated to be linear on 

the overall  pressure range. Also, the accelerometer 

! ;  

32 

lO 

5 
I 

(1 

Fig. 10 

S 
...,-" 

l ' r e ~ s u r e  1 kl>a) 

Pressure transducer calibration chart 

for engine excitation measurement  is set up 

engine block of  exhaust manifold side. The signal 

of  accelerometer is amplif ied by amplif ier  and is 

displayed oll a Tektronix  Type 420 oscil loscope. 

Ampli f ica t ion is control led that the influence of  

sensor sensitivity and noise is considered. The 

signals fl'om the oscil loscope are fed to F F T  

(Fast Four ier  Transformer,  HP35670A) and are 

stored multi channel data recorder. Power  spec- 

trum is obtained on the sampling frequency 500 

Hz, the coherence function between inlet signal 

(@ point) and outlet signal (@ point) is ob- 

tained. The  phase coupl ing phenomenon  of  first 

order fundamental  frequency and second order  

fundamental  frequency is expected at @ point. 

Therefore,  bispectrum is obtained at @ point, and 

the interactions of  frequency components  are 

confirmed through bicoherence analysis. 

4. Experimental 
Results and Conclusions 

The power spectrums of  pressure pulsating at 

measurement point (~)--(~) are given in Figure 11. 

It is confirmed that the pressure pulsating is 

consisted of  fourth order  harmonics.  It is observ- 

ed that the power  spectrum value of  measurement  

point @ had the most magni tude at about  25 Hz 

frequency domain  corresponding to ignition fre- 

quency of  engine speed 800 rpm. The first order 

harmonic  is quickly decreased at measurement  

point @. On the other hand, the frequency com- 

ponent magni tude of  about  5 0 H z  frequency 

domain  corresponding to second order harmonic  
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Fig. 13 Power spectrum of engine excitation 

is lower than first order component at measure- 

ment point (~ (at about 20dB degree). But, it is 

larger than first order component at measurement 

point (~). From the analytical result, the frequency 

components of pulsating pressure wave are gen- 

erally decreased, but the second order harmonic 

of fundamental ignition frequency is nonlinearity 

grown at specific point. For confirming the prop- 

erties, the coherence function between inlet signal 

((~) point) and outlet signal ((~ point) is in- 

dicated in Figure 12. From the coherence func- 

tion, the lowest frequency 50 Hz is combined 

another signal. This phenomenon is influenced by 

excitation of exhaust system about 25 Hz. Figure 

13 shows that the power spectrum of engine vi- 

bration is excited by engine firing. In Figure 13, 

engine ignition frequency of about 25 Hz is in- 

dicated the most magnitude. The high order spec- 

trum is practiced for confirming the interaction 

between two waves. Figure 14 shows the bico- 

herence function. The peak of bicoherence ft, nc- 

tion is indicated at about 25 Hz. It indicates 

lflO 

~ - 5 0  
,,7, 

1 

I i 
I 
I 
I 

. . . . . . .  _ ~  . . . . . .  ~ _ _ _ 9 _  . . . . . . . .  

0 511 
f, t1~) 

Fig. 14 Bicoherence function 

.,+1(25 Hz), f2(50 Hz) and their interactions ( f l +  

fz). This is result from the interaction of phase 

coupling between two waves. 

5. C o n c l u s i o n  

This paper has discussed some of the issues 

associated with the use of higher order spectra 

and the application of such techniques to the 

detection and classification of nonlinearity in au- 

tomotive exhaust system. The power spectrum, 

which was only separated to energy density in 

frequency domain, is not useful to nonlinear 

phenomenon. Bicoherence can be used to detect 

the presence of quadratic phase coupling in a 

signal. Using bicoherence function, formation of 

second harmonic for interaction of frequency 

component is confirmed. The bicoherence is nor- 

malized bispectra respectively and is predomi- 

nantly used to measure quadratic phase coupling. 

Also, bispectrum can be used to detect non-  

Gaussianity in a signal. If a Gaussian signal is 

operated on a nonlinear system then the resulting 

signal will be non-Gaussian. By studying this 

non-Gaussian signal it is possible to obtain in- 

formation about possible nonlinearity in the sys- 

tem. In this paper theoretical formulas have been 

developed to identify the frequency domain prop- 

erties of two broad types of nonlinear models 

consisting of finite memory square-law systems 

that may or may not be in parallel with a separate 

linear system. The analysis is conducted by using 
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special bispectral density functions that are func- 

tion of a single channel instead of the two 

channels. These special bispectra can be comput- 

ed by simple extension of procedures currently 

employed to obtain ordinary spectral density 

functions. Nonlinear coherence functions, togeth- 

er with ordinary coherence functions, are defined 

for these nonlinear models using a general metho- 

dology lbr arbitrary nonlinear systems in parallel 

with arbitrary linear systems. 
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